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Abstract-This study aims to numerically investigate the effects of conduction heat transfer in the pipe 
wall on the unsteady forced convective heat transfer in the flow in a long circular pipe resulting from a 
step change in uniform wall heat tlux over a finite length of the pipe. Substantial influences are observed 
for the variations of Peclet number, radius ratio, conductivity ratio, and diffusivity ratio on the transient 
heat transfer characteristics. In particular, the wall-to-fluid heat capacity ratio is found to have a decisive 

impact on the unsteady heat transfer in the flow. 

lNTROOUCTlON 

THE GROWING research on unsteady convective heat 
transfer is mainly stimulated by the increasing need 
to procure the precise thermal control of various heat 
exchange devices encountered in chemical processes, 
nuclear energy systems, and aerospace equipment. 
Resides, the demands for the detailed understanding 
of the transient heat transfer characteristics in en- 
ergy-related systems during the period of start-up, 
shut-down, or any off-nodal surges in a presumed 
steady normal operation, possibly resulting from the 
changes in loading conditions, have also significantly 
increased. In the present study, particular con- 
sideration is given to the study of unsteady forced 
convective heat transfer in laminar flows through long 
circular pipes with the infhtences of both heat con- 
duction and heat capacity in the pipe wall taken into 
account. 

In the early attempts to treat the problem, because 
of the lack of efficient computational tools, approxi- 
mate methods were employed to deduce the gross 
features of the unsteady heat transfer [l-7]. Recently, 
with the availability of large computing systems and 
efficient numerical schemes, pure numerical solutions 
have been obtained for transient heat transfer in the 
thermal entrance regions in laminar duct flows under 
different thermal conditions [&lo]. 

In the studies [S-lo] just mentioned the transient 
energy equation for the fluid alone was solved with the 
thermal boundary condition at the fluid-wall interface 
prescribed as it is at the outer surface of the pipe wall. 
The results thus produced are only good for heat 
transfer in flows bounded by extremely thin walls. In 
practical situations the pipe wall is normally finite in 
thickness, and thereby the thermal resistance associ- 
ated with the conduction heat transfer in the solid 
wall and the process of thermal energy storing in the 
wall during the transient state must be included in the 
analysis. Recognizing this problem, Sucec and Sawant 

[I l-13] improved the analysis and showed that the 
duct wall heat capacity can have profound influences 
on the unsteady thermal characteristics. But still the 
heat conduction in the wall remains untreated, and 
hence its effect is not known. 

In the present study, the system (Fig. 1) to be exam- 
ined is an infinitely long circular pipe (- 03 < x < co) 
with inside radius Ri and outside radius R,. Initially, 
the system comprising the flowing fluid and the con- 
fining pipe wall is at a constant and uniform tem- 
perature T,. The flow enters the pipe with a uniform 
velocity u, and a uniform temperature T, in the far 
upstream region (x + -co). At time t = 0, a uniform 
heat flux qko is suddenly applied at the outer surface 
of the pipe over a finite length 0 < x < 1 and main- 
tained at this level thereafter, while the upstream 
(- co < x < 0) and downstream (I < x < co) regions 
are well insulated. Attention is focused on the tran- 
sient thermal interactions between the conduction 
heat transfer in the pipe wall and the convection heat 
transfer in the fluid through their common interface. 
The axial heat conduction, radial heat conduction, 
and heat capacity effects in both the fluid and the 
pipe wall on the transient conjugate heat transfer in 
laminar pipe flows are all rigorously taken into con- 
sideration. 

In the material that follows the mathematical for- 
mulation for the problem is first outlined, the nu- 
merical techniques employed to solve the governing 
differential equations are described next, and finally 
the results for the unsteady heat transfer charac- 
teristics in the system are presented over wide ranges 
of the controlling non-dimensional groups. 

ANALYSIS 

Since the fluid is assumed to enter the pipe in 
the far upstream region, the flow can be regarded as 
hydrodynamically fully developed in the region where 
heat transfer is significantly present. By considering 
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NOMENCLATURE 

wall-to&id thermal diffusivity ratio, 
equations (6) 
specific heat 
wall-to-fluid thermal conductivity ratio, 
equations (6) 
thermal conductivity 
dimensionless heated length, equations 

(6) 
heated length 
Nusselt number, equation (IO) 
Peciet number, equations (6) 
dimensionless interfacial heat flux, 
equation (9) 
interfacial convective heat flux, equation 

(11) 
input heat flux to the outside surface of 
the pipe 
inside radius 
outside radius 
radial coordinate 
temperature 
time 

u Auid axial velocity 
X axial coordinate. 

Greek symbols 

; 

thermal diffusivity 
ratio of outside and inside radii, 
equations (6) 

r dimensionless radial coordinate, 
equations (6) 

B dimensionless tem~rature, equations (6) 

5 dimensionless axial coordinate, 
equations (6) 

P density 
z dimensionless time, equations (6). 

Subscripts 
b bulk quantity 
e initial value at the entrance of the pipe 
f fluid 
W pipe wall 
wi fluid-wall interface. 

1 

FIG. 1. Schematic diagram of the physical system. 

the thermophysical properties of the fluid and wall 
to be temperature independent, the energy transport 
processes in the system are governed by the following 
non-dimensional equations as : 

energy equation for the fluid 

I/K, og<<r, 

0, otherwise 

4+--cQ, Bf = 8, = 0 

energy equation for the wall 

The initial conditions are 

z=o, &=&?,=O, -oo<{<co. (3) 

The basic equations are subjected to the following 
boundary conditions : 

aer ae, 
{+cq ----loo, at: at (4) 

The continuity of temperature and heat flux at the 
wall-fluid interface is described by 

q=l, B$=B,, 

aef ae, 

-=%* 84 
-oo<<<co. (5) 

Here the dimensionless quantities are defined as 

5 = x/R; 

q = r/Ri 

7 = t/(R:lc+) 
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L = l/R, 

B = &lRi 

K = k,/kf 

A = cq,,/uf (6) 

where the various symbols used in the above equations 
are defined in the Nomenclature. 

It is clear in the above formulation that five govern- 
ing non-dimensional groups appear for the problem, 
namely, the Peclet number of the flow Pe, the wall- 
to-fluid thermal diffusivity ratio A, the wall-to-fluid 
thermal conductivity ratio K, the ratio of the outside 
and inside radii fi, and the dimensionless heating 
length L. Their influences on the transient thermal 
interactions between the fluid and the wall will be 
examined in detail. 

The interfacial temperature BWi, bulk fluid tem- 
perature &,, dimensionless interfacial heat flux QWi and 
local Nusselt number Nu are of major interest for a 
designer of thermal systems. They can be evaluated as 
follows : 

(7) 

(8) 

(9) 

where 

Nu = VQwi/(ewi -4) (10) 

q;i =k,% 
ar r=R,’ (11) 

SOLUTION METHODOLOGY 

(1) Solve governing equations for Br and 8, by the 
line-by-line method [15] from far upstream to far 
downstream of the heating section where the down- 
stream boundary condition prescribed in equation (4) 
is met for a given time instant. 

On account of the interactions between the con- 
vection heat transfer in the flow and the conduction 
heat transfer in the pipe wall across the fluid-wall 
interface, the solutions of this problem defined by the 
foregoing equations can be found better by numerical 
finite-difference procedures. Because equations (1) 
and (2) are elliptic in space and parabolic in time, the 
solution can be marched in time and swept in space 
from upstream to downstream of the heated region 
with iterations. A fully-implicit numerical scheme in 

which the terms representing the fluid energy trans- 
port by conduction and convection are approximated 
by the exponential scheme [14, 151, the wall diffusion 
terms by the conventional central difference, and the 
unsteady terms by the backward difference, is 
employed to transform the governing equations into 
finite-difference equations. 

(2) Check whether the sum of the relative error of 
0, and 8, for each iteration is small enough or not. If 
yes, the solution for the current time step converges. 
Proceed to the next time instant. If not, repeat the 
above procedure for the current time step until con- 
vergent solutions are reached. 

(3) Procedures (1) and (2) are repeatedly applied to 
each time step from the start of the transient to the 
instant at which the steady state is achieved. 

To obtain desired accuracy, non-uniform grids were 
employed to account for the uneven variations of Br 
and 0, in space and in time with non-uniform time 
steps. In the radial direction the grid point density is 
highest near the interface, whereas in the axial direc- 
tion the highest concentration of the grid point is 
around the beginning and exit end of the heating 
section. 

It is noted that the convection terms has an insep- To verify the adequacy of the numerical scheme just 

arable connection with the diffusion term for the fluid 
energy equation, and thus two terms need to be han- 

dled as one unit by using the exponential scheme. To 
be more specific, equation (1) can be written as 

where 

+Jt,j+1/2-J;,,p1/2 =O (12) 

In the above equation J is the total heat flux, 0:: ‘,” 
the dimensionless temperature at nodal point (i,j) at 
the k+ lth time step at iteration n, and i, j, k, and n 
are the indices in the axial direction, radial direction, 
time step, and iteration, respectively 

Pi = Ml -r:)A&, Ari, = :(?I+ l -Vim 11, 

Afi = :(5,+ I -L I). (14) 

Each system of finite-difference equations forms a 
tridiagonal matrix which can be efficiently solved by 
the Thomas algorithm [ 151. For a given condition, a 
brief outline of the solution procedures is described 
as follows. 
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described for the problem considered, the results for 
the unsteady axial variations of interfaciat temper- 
ature are obtained by the present numerical scheme 
in the limiting case in which the Peclet number, wall- 
to-fluid conductivity ratio, and heating length are very 
large, and wall thickness is very small and by the 
scheme employed by Chen et al. [9]. Excellent agree- 
ment is observed. This comparison lends support for 
the use of the scheme proposed to the analysis of the 
present problem. 

DtSCUSSION OF RESULTS 

The preceding analysis indicates that the transient 
heat transfer characteristics in the flow and pipe wall 
depend on the Peel& number Pe, the wall-to-fluid 
thermal conductivity ratio K, the wall-to-fluid thermal 
diffusivity ratio A, the ratio of outside and inside radii 
8, and the dimensionless length of the heated section 
L,. While computations can be conducted for any com- 
bination of these parameters, the objective here is to 
present a sample of results that could illustrate the 
phenomena of the transient conjugate heat transfer 
which takes into account the heat capacity effects, 
axial and radial conduction in the flow and pipe wall. 
In the following, attention is primarily given to a 
system in which liquid metal flows in a metal pipe. 

As was explained by Faghri and Sparrow 1161, the 
dist~bution of Nusselt number is not very info~ative 
in the study of conjugate heat transfer. Instead, the 
interracial heat flux distribution contains more infor- 
mation. The unsteady axial distributions of the non- 
dimensional interfacial heat flux Qwi are shown in Fig. 
2 for Pe = 20, K = 1, p = 1.5, A = 4, and L = 50 
at various instants of time. A number of interesting 
features are unveiled in this figure. In the immediate 
upstream region of the heated section where no energy 
is directly supplied to the pipe from the outer surface, 

-10. 0. 10. 20. 30. 40. 50. 60. 

t 

FIG, 2. Transient axial di~tribut~o~a of interfacial beat BUX. 
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some heat transfer from the wall to the fluid is noted. 
The occurrence of this unusual heat transfer is due to 
the heat penetration by the upstream axial conduction 
heat transfer in the wall from the direct heating region 
to the upstream unheated region [I@ As time goes, 
the thermal energy diffuses further upstream, and its 
magnitude becomes larger. The curves of Qwi drop 
off with increasing upstream distance as the thermal 
energy stored in the wall is drained away by the ilow- 
ing fluid across the interface. In the region of direct 
heating, Qwi increases with time and gradually reaches 
the steady state condition. As a result it takes a finite 
period of time for the energy applied on the outer 
surface of the pipe to be transferred to the inner 
surface. This is a direct consequence of the finite heat 
capacity of the wall material and is commonly known 
as the thermal lag of the system. If the wall was 
neglected in the analysis, Qwi would be unity in the 
direct heating region and zero in the other regions. 
No thermal lag can occur. 

As r is small, Qwi grows very quickly and is rather 
uniform in the axial direction except near the ends of 
the heated section. The uniformity of Qw is caused by 
the dominant radial heat conduction over the axial 
forced convection during the initial transient 
(z < 0.11). Hence the temperature variations are 
mainly in the solid region, as evident in the tem- 
perature profiles shown in Fig. 3 where the tem- 
perature profiles at three different axial locations, 
5 = 0.43, 10.7, and 51, are plotted at various instants 
of time. The period of the initial transient can be 
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approximately estimated from the smaller of the two 
criteria-one based on the axial convection as 
z < 5 < Pe and another on the radial conduction as 
z < (/I - 1)/2,/A. After r = 0.11, the forced con- 
vection exhibits an increasing influence on heat trans- 
fer processes, which results in the presence of a peak 
of Q,,,i near 5 = 0. With further increase in time, the 
peak becomes more pronounced. In the meantime 
the fluid carrying the convective energy downstream 
gradually levels Qwi off until the steady state is 
reached, at this state Qwl is unity in the major portion 
of the direct heating region. 

In the neighborhood of the exit end of the heated 
section, Qwi shows a dramatic change in the flow direc- 
tion at different moments of time. At the very begin- 
ning of the heating, only a small amount of energy is 
transported away by the axial conduction in the pipe 
wall to the unheated portion of the pipe so that Q,,,, is 
infinitesimal in quantity. With time elapsing, the 
energy transported by axial conduction in the pipe 
wall downstream gradually increases, whereas the 
heat transported by the forced convection in the flow 
has not arrived at this region. Consequently, heat 
penetration into the downstream region through the 
wall and transfer to the flow across the interface can 
be observed. As time increases further, it is surprising 
to find that Qwi is negative, i.e. heat transfer is from 
the fluid to the wall. The reversal in heat transfer 
direction may be brought about by the possibility 
that the propagation speed of heat transfer by axial 
conduction in the solid wall from the adjacent heated 
section can be slower than the energy transport in 
the flow by forced convection from the flowing fluid 
in the heated section at a certain time instant, and 
hence the wall temperature is below the fluid tem- 
perature, as evident from the close inspection of the 
temporal evolution of the temperature profiles given 
in Fig. 3(c) for the curve for t = 2.0. Accordingly heat 
is transferred from the flow to the wall. At a certain 
later instant of time, the temperature penetration in 
the postheated region by the heat conduction in the 
wall can be large enough so that the wall temperature 
becomes higher than the fluid temperature. The heat 
transfer is then from the wall to the fluid. 

It is also noteworthy in Fig. 2 that, near the begin- 
ning of the heated section, Qwi gets to the steady state 
value quickly, which is more clearly shown in Fig. 
3. Steady state is already prevalent when 7 = 2.0 at 
5 = 0.43, while at 5 = 10.7 and 51, the steady states 
are reached at 7 = 8.8 and 38, respectively. By inspect- 
ing the governing equations given in equations (1) 
and (2) it can be stated that the condition of the 
steady heat transfer is attained when, considering a 
differential control volume in the flow, the convection 
energy transport in the axial direction is balanced by 
the diffusional energy transport in both the axial and 
radial directions in the flow. In the meantime, the 
conduction heat transfer is balanced in both radial 
and axial directions in the pipe wall. Consequently, 
no net energy is stored in the fluid and pipe wall. 
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FIG. 4. Unsteady axial variations of bulk fluid and interfacial 
temperature. 

Aside from the dimensionless interfacial heat flux 
which is important in the aspect of thermal inter- 
actions between the fluid and the pipe wall, the charac- 
teristics of the transient axial distributions of the bulk 
fluid and interfacial temperatures are more descriptive 
from the viewpoint of understanding the energy trans- 
port processes in the system. Hence, to improve our 
understanding, Fig. 4 presents the results for the dis- 
tributions of the bulk fluid and interfacial tem- 
peratures at various instants of time. The afore- 
mentioned characteristics, namely, the domination of 
the heat conduction effect at small r, the early 
appearance of the steady state condition at the 
upstream station of the direct heating region, the 
phenomena of heat penetration from the heated 
region to the unheated region, and the change of heat 
transfer direction immediately downstream of the exit 
end of the heating section are all clearly illustrated 
in this figure. In the early period, the heat conduction 
plays an important role so that the curves for ewi and 
&, become horizontal in the region of direct heating. 
But the quantity of heat transported by axial con- 
duction into the unheated region is very small so that 
the values of Bwi and & are infinitesimal in the 
unheated portion near the entering and exit ends of 
the direct heating region. As time goes on, the influ- 
ences of both the forced convection in the flow and 
the conduction in the pipe wall increase so that 6,i 
and 6$, increase with 5 at the initial portion of the 
region. This portion gets larger with time. Finally, a 
nearly linear increase of the temperatures results when 
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FIG. 5. Unsteady axial distributions of local Nusselt number. 

the steady state condition is approached. In the 
neighborhood of the exit end of the heating section, 
decreases in &, and 8,, are noted. This decrease in 
temperatures is due to the energy drained away in the 
flow direction by the heat conduction in the pipe wall. 

As was mentioned earlier, the local Nusselt number 
in the flow is not a convenient computational par- 
ameter for the conjugate heat transfer problem 
because it includes three unknowns - QWi, BWi and &. 
Besides its magnitude does not represent the actual 
heat transfer rate. In spite of these defects, the dis- 
tributions of Nu are shown here for those who are 
interested in the thermal system design. The unsteady 
axial distributions of Nu, shown in Fig. 5, are quite 
different from those predicted with the wall effects 
neglected [8-lo]. By and large Nu decreases with time 
in the direct heating region. This is simply because at 
short time the very small difference between & and 8,, 
results in a large value of Nu, according to the defi- 

nition of NM, equation (10). 
To investigate the effects of the pipe wall thickness, 

the unsteady axial distributions of QWi are displayed 
in Fig. 6 for /I = 1.2. These curves resemble those in 
Fig. 2. But there are several prominent differences 
between them. The time required for the heat transfer 
in the system to arrive at the steady state condition is 
less for the case with /3 = 1.2. This point can be made 
clearer by comparing Figs. 4 and 7 where the axial 
distributions of 0,, and 0, for /3 = 1.5 and 1.2 are 
plotted at various T. Besides, it is also found that the 
value of QWi at r = 0.11, when the heat conduction is 
still dominant, is larger for the case with B = 1.2. The 
above outcomes are apparently due to the fact that 
the total thermal resistance and heat capacity of the 
wall are small for a thinner wall so that the heat 
supplied from the outside surface of the pipe is easily 
transported to the wall and the fluid. Consequently, 
the presence of the pipe wall has a significant influence 
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FIG. 6. Effects of the pipe wall thickness on the transient 
axial distributions of interfacial heat flux. 
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FIG. 7. Effects of the pipe wall thickness on the unsteady 
axial variations of bulk fluid and interfacial temperatures. 

on the characteristics of heating the flowing fluid dur- 
ing the unsteady state, and thus the wall effects cannot 
be disregarded for transient conjugate heat transfer 
problems. 

Next, the influences of the Peclet number of the flow 
on the characteristics of the transient heat transfer are 
examined. Illustrated in Figs. 8 and 9 are the time 
evolutions of the axial distributions of QWi, OWi and B,, 
respectively, for Pe = 100. In appearance these curves 
are similar to those presented in Figs. 2 and 6 for Q,,,, 
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FIG. 8. Effects of the Peclet number on the transient axial 

distributions of interfacial heat flux. 
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FIG. 9. Effects of the Peclet number on the unsteady axial 

variations of bulk fluid and interfacial temperatures. 

and those in Figs. 4 and 7 for BWi and t$,. Careful 
scrutiny of those plots reveals the effect of the pipe 
wall thickness, the time required for heat transfer in 
this system to attain the steady state condition is 
shorter for the case with Pe = 100. The result may be 
caused by the fact that as Pe gets larger, the thermal 
energy stored in the pipe wall is more quickly carried 
away downstream by the fluid at a higher velocity. 
Examining the scales of the ordinates in the plots 

.6 
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-. 6 

-8 

K =1 
A - 0.3 
L 250 

-10. 0. 10. 20. 30. 40. 50. 60 

e 
FIG. 10. Effects of the thermal diffusivity ratio on the tran- 

sient axial distributions of interfacial heat flux. 

(Figs. 4 and 9) indicates that BWi and eb are smaller 
for the case with Pe = 100, as compared to those 
with Pe = 20. In addition, the negative QW, in the 
neighborhood of the exit end of the directly heated 
section can exist in a larger portion of the flow for 
larger Pe, and the heat transfer reversal takes place 

earlier. 
In Fig. 10, the effect of the wall-to-fluid thermal 

diffusivity ratio on the distributions of QWi are pre- 
sented for A = 0.3 at various instants of time. These 
curves are very different from those in Fig. 2. Com- 
paring the results in Figs. 2 and 10 clearly shows that 
the time from the start of the transient to the steady 
state is much longer for the case with A = 0.3. This 
difference is believed to result from the fact that for a 
small A (= cr,/cr,), or equivalently a small c(, or a 
large wall heat capacity in a relative sense, the heat 
transmission in the wall by the conduction heat trans- 
fer during the unsteady temperature change is then 
slower [12]. This in turn causes a larger thermal lag in 
the system, as is apparent by comparing Figs. 4 and 
11. Special attention is focused on the curves of Bwi 
and eb for smaller z shown in Figs. 4 and 11. The 
values of BWi and &, at z = 1 .O for the case with A = 0.3 
are smaller than those for the case with A = 4, since 
at this time instant the conduction dominates the heat 
transfer process for A = 0.3 while the convection 
already shows up in the flow for A = 4. Moreover, 
there is a prominent difference between the results for 
QWt in Figs. 2 and l&the magnitude of the negative 
QWi in the unheated portion around the exit end of the 
heating section for the case with A = 0.3 is larger than 
that for the case with A = 4. The larger heat transfer 
reversal is due to the fact that for smaller A the heat 
capacity of the wall is larger, and thus the temperature 
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FIG. 12. Effects of the thermal conductivity ratio on the 
transient axial distributions of interfacial heat flux. 

penetration by the axial conduction in the unheated 
solid wall from the adjacent heated section is much 
slower than the energy transport by the forced con- 
vection from the flowing fluid in the heating section. 

The influences of the wall-to-fluid thermal con- 
ductivity ratio on the characteristics of the transient 

aC 

6. 

3. 

0. 

Pe=20 

.lQ 0. 10. 20. 30. LO. 50. 60. 

5 

and 13 are the axial distributions of Q,,,,, &, and 0, at 
various instants of time for K = 10. These curves are 
similar to those in Figs. 2, 6, 8 and 10. But there are 
two noticeable differences between them. First, for 
K = 10 the extent of the temperature penetration 
through wall conduction upstream and downstream 
of the direct heating region is more substantial. Sec- 
ondly, the time needed for the heat transfer transient 
in this system to die away is a lot longer for the case 
with K = 10. For instance, it can be directly read from 
the plots that at 5 = 20 the steady state is not reached 
as z = 38 for K = 10, while for K = 1 at the same axial 
location the steady state is already achieved when 
r = 4.2. This result can be readily understood by recog- 
nizing that for a larger K (= Ap,c,,/p,c,,~) with A 
fixed, the heat capacity for the wall pwc,,, is larger by 
comparing with that for the fluid. Like the effects of 
lowering A, this increase in K results in not only a 
longer thermal time lag but also a larger negative Qwi 
in the unheated portion in the exit end of the heating 
section. 

The results presented above for the effects of’A and 
K on the transient heat transfer characteristics seem 
to suggest that the ratio K/A (= p,c,,,,/p,c,,,) is a major 
parameter on the thermal lag of the system, which is 
consistent with the simplified analysis given by Sucec 

ill]. 
The last governing parameter on the unsteady ther- 

mal characteristics is the heating length. Its effect on 
the unsteady heat transfer in the system is relatively 

heat transfer are also interesting. Plotted in Figs. 12 insignificant except for the case with a short heating 
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length (L < 10) for which the thermal interactions 
between the upstream and downstream regions of the 
heating section may appear. 

CONCLUDING REMARKS 

Transient conjugate heat transfer considering heat 
capacity and conduction heat transfer in both axial 
and radial directions in the fluid and in the pipe wall as 
well as in fully-developed laminar pipe flows resulting 
from a step change in a uniform wall heat flux over a 
finite length of the pipe has been numerically studied. 
Results are particularly presented for the heating of 
liquid metal flowing in a metal pipe over wide ranges 
of the governing parameters. The influences of five 
governing non-dimensional groups, i.e. the Peclet 
number Pe, the ratio of outside and inside radii b, the 
wall-to-fluid thermal conductivity ratio K, the wall- 
to-fluid thermal diffusivity ratio A, and the non- 
dimensional heating length L, have been investigated 
in great detail. 

The results obtained in the present study can be 
briefly summarized as follows. 

(1) The unsteady axial variations of non-dimen- 
sional interfacial convective heat flux considerably 

deviate from the corresponding steady values 
especially in the initial transients. 

(2) The existence of peaks of Qwi in the direct heat- 
ing region around 5 = 0 and the appearance of nega- 
tive QWl in the unheated region immediately following 
5 = L during the unsteady state are observed. 

(3) The wall plays a significant role in a transient 
conjugate heat transfer problem. 

(4) The Peclet number has significant influences on 
the unsteady heat transfer. It takes less time for the 
transient to die out for the flow with larger Peclet 
number. 

(5) The heat capacity of the wall has a decisive effect 
with regard to the speed of propagation of thermal 
energy from the outer surface of the pipe to the wall- 
fluid interface. 

(6) The time required for the heat transfer to reach 
the steady state condition is longer for the system with 
large /?, K, and L or with smaller Pe and A. 

The numerical scheme employed in the present 
study is expected to be applicable to any flowing fluid- 
pipe wall combinations although it is used here to 
obtain the transient heat transfer results for the liquid 
metal flow in a metal pipe. It is of interest to find out 
how important the presence of a finite pipe wall is on 
the convection heat transfer in other combinations. 
Also the extension of the present study to the tur- 

bulent flows is certainly of great value. Moreover, 
the inclusion of the buoyancy effects in the study is 
highly recommended because they always exist in 

the flows. 
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TRANSFERT THERMIQUE CONJUGUE VARIABLE DANS DES ECOULEMENTS 
LAMINAIRES ETABLIS DANS DES TUBES 

Rbaum&On Ctudie num~riquement les effets de la conduction the~ique dans la paroi du tube sur le 
transfert convectif force pat I’bcoulement et r&&ant d’un changement &chelon d’un flux de chaleur 
uniforme d la paroi, sur une longueur finie du tube. On observe des effets substantiels suivant les valeurs 
du nombre de Peclet, du rapport du rayon, des rapports de conductivity et de diffusivit&, sur tes carac- 
tkristiques du transfert thermique variable. En particulier, le rapport des capacitks calorifiques a un effet 

important sur le transfert thermique variable dans I’&coulement. 

INSTATIONARE KONJUGIERTE W~RME~BERTRAGUNG IN VOLLENTWICK~LTEN 
LAMINAREN ROHRSTRGMUNGEN 

Zusammenfassung-Das Ziel dieser Arbeit ist die numerische Untersuchung des Eintlusses der Wlrme- 
leitung in der Rohrwand auf den instationlren WIrmeiibergang bei*erzwungener Konvektion in einem 
langen Kreisrohr. Dieser EinfIuB resultiert aus einer sprunghaften Anderung des WSirmestroms durch 
die Wand entlang eines endlichen Rohrabschnitts. Einen wesentfichen EinfluB auf den instation~ren 
Wlrmeiibergang haben die Peclet-Zahl, das RadienverhIltnis, das Verhlltnis der WLrmeleitf%higkeiten 
und das Verhlltnis der Temperaturleitfghigkeiten. Insbesondere hat das Verhlltnis der WBrmekapazit&en 
von Wand und Fluid einen entscheidenden EinRu5 auf den instationlren W~~e~bergang in der Striimung. 

HEYCTAHOBMBIIII4fiCX COIIPIIXtiHHbIfi TEI-IJIOI’IEPEHOC IIPZl I-IOJIHOCTbIO 
PA3B~OM ~AM~H~HOM TEYEHMH B TPYEE 

.bUOTaqP-qHCneHH0 accnenonauo nnmnnie KOH~YRTHLIH~~O neper.mca Tenna a cremce Tpy6b1 Ha krec- 
Ta~oHapn~~ ~0nae~nnH~~ Teixnouepenoc miyqxi ~~~~nm-xofi Kpyrno# TpyfirJ np5i crynewiaToh5 z43Me- 
Hemm OAHO~OJIHO~O Tennosoro noToga IU pawe KoHewofi JXJIEUWI. 06HapymeHo cyuaecrsemxoe 
BJIHRHHC H3MCHeHHR 4HCJla rkJlC,OTHOUlCWWR pWiyCOB,K03+$HlUieHTOB TNIJlOlIpOllOiIHOCTd H TCM- 

~epaT~n~ao~~e~ Ha xapa~~~~H ffey~ffoBHB~r~~ Te~o~MeHa. B ~acrmnXn mi&zeffo, 
STO omomeme Tenno&mocrefi creiiw H x~ocmi oKa3btsaeT cyruecrsemioe wnimi~e Ha wcrar.mo- 

HapHbIiiTeIIJI006MeHBnOTOKe. 


